526 research outputs found

    Open-architecture Implementation of Fragment Molecular Orbital Method for Peta-scale Computing

    Full text link
    We present our perspective and goals on highperformance computing for nanoscience in accordance with the global trend toward "peta-scale computing." After reviewing our results obtained through the grid-enabled version of the fragment molecular orbital method (FMO) on the grid testbed by the Japanese Grid Project, National Research Grid Initiative (NAREGI), we show that FMO is one of the best candidates for peta-scale applications by predicting its effective performance in peta-scale computers. Finally, we introduce our new project constructing a peta-scale application in an open-architecture implementation of FMO in order to realize both goals of highperformance in peta-scale computers and extendibility to multiphysics simulations.Comment: 6 pages, 9 figures, proceedings of the 2nd IEEE/ACM international workshop on high performance computing for nano-science and technology (HPCNano06

    Experiences of Mindful Education: Phenomenological Analysis of MBCT Exercises in a Graduate Class Context

    Get PDF
    This paper uses phenomenological psychology both as a qualitative inquiry and a pedagogic tool in order to understand how graduate students experience the exercises of the Mindfulness-Based Cognitive Therapy program in a classroom setting. This understanding is necessary for both teachers and researchers of contemplative pedagogy to ensure that students are helped and not harmed by these practices, as well as to tailor teacher responses to the plurality of individual experience. Furthermore, it aids students in becoming aware of and articulating the changes they are undergoing through contemplative practices. This paper shares summaries of the autophenomenologies of three participants which are then interpreted by the research team. These idiographic descriptions are examined on four themes: 1) textures of attention, 2) “using” mindfulness to relax, 3) normative consciousness, and 4) pedagogical dangers and process. The analysis suggests that mindful education needs to take care in understanding the limits of our ability to express matters concerning the subtleties of how we pay attention, consider the complex interplay in non-clinical populations between “being mode” and “doing mode,” and how that connects to our interpretation of “non-judgment” in mindfulness

    Estimation of Land Surface Albedo from GCOM-C/SGLI Surface Reflectance

    Get PDF
    XXIV ISPRS Congress “Imaging today, foreseeing tomorrow, ” Commission III2021 edition, 5–9 July 2021This paper examines algorithms for estimating terrestrial albedo from the products of the Global Change Observation Mission – Climate (GCOM-C)/Second-generation Global Imager (SGLI), which was launched in December 2017 by the Japan Aerospace Exploration Agency. We selected two algorithms: one based on a bidirectional reflectance distribution function (BRDF) model and one based on multi-regression models. The former determines kernel-driven BRDF model parameters from multiple sets of reflectance and estimates the land surface albedo from those parameters. The latter estimates the land surface albedo from a single set of reflectance with multi-regression models. The multi-regression models are derived for an arbitrary geometry from datasets of simulated albedo and multi-angular reflectance. In experiments using in situ multi-temporal data for barren land, deciduous broadleaf forests, and paddy fields, the albedos estimated by the BRDF-based and multi-regression-based algorithms achieve reasonable root-mean-square errors. However, the latter algorithm requires information about the land cover of the pixel of interest, and the variance of its estimated albedo is sensitive to the observation geometry. We therefore conclude that the BRDF-based algorithm is more robust and can be applied to SGLI operational albedo products for various applications, including climate-change research

    Early Responses to Intravitreal Ranibizumab in Typical Neovascular Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy

    Get PDF
    Purpose. To evaluate the early response to intravitreal ranibizumab (IVR) in two different phenotypes of age-related macular degenerations (AMD): typical neovascular AMD (tAMD) and polypoidal choroidal vasculopathy (PCV). Methods. Sixty eyes from 60 patients (tAMD 28, PCV 32 eyes) were recruited. Three consecutive IVR treatments (0.5 mg) were performed every month. Change in the best-corrected visual acuity (BCVA) and central retinal thickness (CRT) was then compared between the tAMD and PCV groups. Results. The mean BCVA logMAR was significantly improved at month 1 and month 3 after the initial IVR in the tAMD group, but there was no change in the PCV group. Both phenotypes showed significant improvements in the CRT during the 3 months after the initial IVR. There were no significant differences in the improvements of the CRT in the tAMD versus the PCV group. In the stepwise analysis, a worse pretreatment BCVA and tAMD lesions were significantly beneficial for a greater improvement of BCVA at 3 months after the initial IVR. Conclusions. The phenotype of tAMD showed a significantly better early response to IVR than PCV in terms of BCVA improvement

    Multi-physics Extension of OpenFMO Framework

    Full text link
    OpenFMO framework, an open-source software (OSS) platform for Fragment Molecular Orbital (FMO) method, is extended to multi-physics simulations (MPS). After reviewing the several FMO implementations on distributed computer environments, the subsequent development planning corresponding to MPS is presented. It is discussed which should be selected as a scientific software, lightweight and reconfigurable form or large and self-contained form.Comment: 4 pages with 11 figure files, to appear in the Proceedings of ICCMSE 200
    corecore